PARQUE ECOLÓGICO MUNICPAL "VALE DO SOL"

PEDERNEIRAS - SP

INSTALAÇÕES ELÉTRICAS

PROJETO DE POSTO DE TRANSFORMAÇÃO PARA O PARQUE ECOLÓGICO

MEMORIAL DESCRITIVO E DE CÁLCULO

Índice

1.	Objetivo	01
2.	Identificação do Empreendimento	01
3.	Descrição do Empreendimento	01
4	. Carga Instalada e Cálculo da Demanda	01
5.	Tensões de Trabalho	02
6.	Origem da Rede Alimentadora	03
7	. Posto de Transformação	03
8.	Condições Gerais	0.6

1. Objetivo

Este memorial tem por objetivo apresentar a descrição e os critérios de cálculo adotados para a execução do projeto das **Instalações Elétricas do Posto de Transformação** para o <u>Parque</u> Ecológico, município de Pederneiras - SP.

O projeto desenvolvido obedece às normas da CPFL (Companhia Paulista de Força e Luz).

2. Identificação do Empreendimento

- Nome do Empreendimento: Parque Ecologico

- Município: Pederneiras - SP

- Proprietário: Prefeitura Municipal de Pederneiras

3. Descrição do Empreendimento

O "Parque Ecológico", localizado no município de Pederneiras - SP possuirá pista de caminhada, quadras esportivas e área para shows, sendo administrado pela Prefeitura Municipal de Itapuí.

4. Carga Instalada e Cálculo da Demanda

4.1 Carga Instalada

Quantidade	Equipamento	Potência Total (VA)
5	Motores de 3 CV cada	20.200
_	Iluminação	30.000
4	Chuveiros	20.000
_	Equipamentos de Som	10.000
-	Cargas Diversas	10.000
	TOTAL	90.200

4.2 Cálculo da Demanda

4.2.1 - Iluminação e Cargas Diversas

Carga Instalada (C.I.) = 70.000 VA

Fator de Demanda (F.D.) = 1,00 (considerando shows

noturnos)

Demanda o item 'a' (Da) = $70.000 \times 1,00$

Da = 70.000 VA

4.2.2 - <u>Motores</u>

Carga Instalada (C.I.) = 20.200 VA

Fator de Demanda (F.D.) = 1,00

Demanda o item 'b' (Db) = $20.200 \times 1,00$

Db = 20.200 VA

4.2.3 - Demanda Total

Dtotal = Da + Db

Dtotal = 70.000 + 20.200

Dtotal = 90.200 VA

Portanto o transformador deverá ser de **112,5 kVA,** trifásico, com tensões secundárias de 220 V/127 V.

5. Tensões de Trabalho

Considerando que se trata de empreendimento na área urbana e região de concessão da CPFL - Companhia Paulista de Força e Luz, a tensão primária de trabalho considerada foi:

- Média Tensão......13.200 V
- O Parque Ecológico receberá energia em média tensão e possuirá transformador próprio. Considerando-se as características das cargas particulares a serem ligadas na unidade consumidoras, na baixa tensão as tensões de trabalho serão de:
 - entre fases......220 V
 - entre fase e neutro......127 V

6. Origem do Ramal Alimentador

A alimentação do empreendimento se dará a partir da rede de média tensão (13,2 kV) existente nas proximidades do empreendimento, conforme mostra o projeto, <u>havendo necessidade</u> de obra por parte da CPFL para alimentação.

7. Posto de Transformação

O posto de transformação compreende a tomada de energia, as chaves de manobra e proteção em média tensão, pára-raios na média tensão, transformador, alimentadores na baixa tensão, conjunto de medição, manobra e proteção na baixa tensão e aterramento.

7.1 Tomada de Energia

A tomada de energia será aérea em média tensão (13,2 kV) através de rede compacta classe 15 kV na bitola 70 mm², que alimentará o posto de transformação com transformador de 112,5 kVA e tensões secundárias de 220/127 V, no interior da área do Parque Ecológico, conforme mostra o projeto.

7.2 Manobra e Proteção na Saída do Ramal (Média Tensão)

No poste da derivação para o Poço, serão instaladas 3 (três) chaves fusíveis tipo *Load-Buster*, com as seguintes características:

_	Classe	de
tensão		
15 kV		
-		Corrente
nominal		
300 A		
-	Corrente	de
interrupção		
10 kA		

Estas chaves foram projetadas de forma a proteger os diversos pontos do ramal em função de suas cargas e de permitir seletividade no caso de defeito e/ou manutenção da linha.

	O elo	fusível	desta	chave	deve	rá ser	adequ	ado para	:
	_	Elo	f	usível	-	no		poste	da
deriv	vação								15
K									
7.		obra nsform			-			Posto	de
	0 pos	te de c	chegada	do r	amal	aéreo	será	dotado	de uma
estrı	ıtura t	tipo CE3	, onde	e serâ	ăo in	stalad	las 3	(três)	chaves
fusív	veis cor	m capaci	dade pa	ra 300) A, (do tipo	o Load	-Buster,	com as
segui	intes ca	aracterí	sticas:						
	_			(Classe	e			de
	tensão	o					
				.15 kV	I				
	_							C	Corrente
	nomina	al					
				300 <i>F</i>	A				
	_			С	orrent	ce			de
	inter	rupção					
			10 kA						
	_	Elo	fı	usível	-	no		posto	de
	trans	formação			. .	· • • • • •			6 K
	Estas	chaves	foram	proj	etada	s de	forma	a prot	teger o
trans	sformad	or em	função	de	suas	caro	gas e	e de p	ermitir
selet	tividade	e no	caso	de	defei	to e	/ou	manutenç	ção do
trans	sformado	or.							
	A prot	teção co	ntra de	scarga	as atr	nosféri	icas d	everá se	er feita
atrav	vés de 1	um conju	nto de	(03) t	três p	para-ra	aios d	e linha,	com as
segui	intes ca	aracterí	sticas:						
	_			(Classe	9			de
	tensão	0				

..... 15 kV

_							
Tipo.							. .
					p	olimérico)
-		С	orrent	te			d€
inter	rupção		· · · · ·				. .
		10 kA					
Estes	para-raios	deverão	ser	interlig	ados a	ao sistem	ıa de
aterramento	através de	cabos de	cobre	e nu na l	oitola	de 50mm ²	•

7.4 Transformador

Com base no cálculo de demanda do Parque Ecológico a ser alimentado por este posto de transformação, projetou-se um transformador de 112,5 kVA, a volume normal de óleo, com as seguintes características:

_			Bornes
Primários			
12,	6 a 13,8 kV		
-			Bornes
Secundários			
380/22	0 V		
-			
Ligações			
	Delta/Es	strela	
-	Nível	básico	de
isolação			
. 95 kV			

7.5 Alimentadores na Baixa Tensão

Considerando a carga para a máxima capacidade do transformador; considerando a maneira de instalar os condutores de acordo com a NBR 5410; considerando ainda os valores máximos de queda de tensão; propõe-se para as fases, a instalação de um circuito constituído de cabos unipolares isolados em EPR ou XLPE na bitola de 120 mm², 1 kV, na cor preta. O neutro também será de 120 mm², porém na cor azul claro. O eletroduto que

conduzirá os cabos dos terminais de saída do transformador até a medição deverá ser de bitola 4" (ou 100 mm).

7.6 Conjunto de Medição

Considerando a demanda prevista, a medição será feita na baixa tensão. O conjunto de medição ficará localizado abaixo do posto de transformação, abrigado através de alvenaria, logo após a chegada dos cabos secundários na caixa de medição, e deverá possuir os medidores de energia ativa e reativa, conforme critérios da concessionária.

7.7 Manobra e Proteção na Baixa Tensão

Para manobra e proteção geral na baixa tensão projetou-se um disjuntor termomagnético tripolar, de corrente nominal de 250 A e corrente de curto-circuito de, no mínimo, 40 kA.

7.8 Sistema de Aterramento

Deverá ser executada duas malhas de terra ao redor da plataforma de transformação (vide folha 2 do projeto) composta por hastes de terra cobreadas de 2,4 m x 5/8" e cabos de cobre nu bitola 50 mm², onde deverão ser aterradas todas as partes metálicas não destinadas à condução de corrente elétrica.

A resistência máxima de aterramento deverá ser de 10 ohms com qualquer tipo de terreno (seco ou úmido). Caso isto não aconteça o número de hastes deverá ser aumentado.

8. Condições Gerais

8.1 Alteração na Execução

Qualquer alteração de ordem técnica que se fizer necessária por ocasião da execução dos serviços deverá receber análise antecipada do Engenheiro Responsável pelo projeto.

A não observância deste item implica na exoneração de todas as responsabilidades do projetista.

8.2 Integração Projeto - Memorial

O presente "Memorial Descritivo e de Cálculo" é parte integrante do projeto completo, e os detalhes e observações que ficarem omissos no projeto deverão seguir orientações aqui descritas ou vice-versa.

Para validade do presente "Memorial Descritivo e de Cálculo", dato e assino.

Pederneiras, 09 de fevereiro de 2023.

IVANA MARIA BERTOLINI CAMARINHA

Prefeita Municipal de Pederneiras

ALEX TINCANI PACHECO

Eng° Elet. CREA/SP 5069710529 Responsável Técnico